Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (cont.)

* For example, line 37 could have invoked
getCommissionRate and getGrossSales to
access CommissionEmployee’s private data
members commissionRate and grossSales,
respectively.

« Similarly, lines 44-47 could have used appropriate
get member functions to retrieve the values of the
base class’s data members.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee

Inheritance Hierarchy (cont.)

Including the Base-Class Header in the Derived-Class
Header with #inc lude

« We #1nclude the base class’s header in the derived class’s
header (line 8 of Fig. 11.10).

» This Is necessary for three reasons.

— The derived class uses the base class’s name in line 10, SO we
must tell the compiler that the base class exists.

— The compiler uses a class definition to determine the size of an
object of that class. A client program that creates an object of a
class #1ncludes the class definition to enable the compiler to
reserve the proper amount of memory for the object.

— The compiler must determine whether the derived class uses the
base class’s inherited members properly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Creating a Commi1ssionEmployee—
BasePlusCommissionEmployee
Inheritance Hierarchy (cont.)

L inking Process in an Inheritance Hierarchy

 In Section 3.7, we discussed the linking process for creating an
executable GradeBook application.

« The linking process is similar for a program that uses classes
In an inheritance hierarchy.

« The process requires the object code for all classes used in the
program and the object code for the direct and indirect base
classes of any derived classes used by the program.

« The code is also linked with the object code for any C++
Standard Library classes used in the classes or the client code.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data

In this section, we introduce the access specifier
protected.

To enable class BasePlusCommissionEmployee to
directly access CommissionEmp loyee data members
firstName, lastName, socialSecurityNumber,
grossSales and commissionRate, we can declare
those members as protected in the base class.

A base class’s protected members can be accessed
within the body of that base class, by members and
friends of that base class, and by members and friends

of any classes derived from that base class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data (cont.)

Defining Base Class Commi1ssi0onEmp loyee
with protected Data

* Class CommissionEmployee (Fig. 11.12)
now declares data members 1 rstName,
lastName, socialSecurityNumber,
grossSales and commissionRate as
protected (lines 31-36) rather than
private.

* The member-function implementations are
Identical to those i Fig. 11:5.

I // Fig. 11.12: CommissionEmployee.h

2 // CommissionEmployee class definition with protected data.

3 #ifndef

4 #define

5

6 #include <string> // C++ standard string class

7

8 «class CommissionEmployee

9 {

10 public:

11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = , double =)

13

14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name

16

17 void setlLastName(const std::string &); // set last name
I8 std::string getLastName() const; // return last name

19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22

Fig. 11.12 | CommissionEmployee class definition that declares protected
data to allow access by derived classes. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23 void setGrossSales(double); // set gross sales amount

24 double getGrossSales() const; // return gross sales amount
25

26 void setCommissionRate(double); // set commission rate
27 double getCommissionRate() const; // return commission rate
28

29 double earnings() const; // calculate earnings

30 void print() const; // print CommissionEmployee object

31 protected:

32 std::string firstName;

33 std::string lastName;

34 std: :string socialSecurityNumber;

35 double grossSales; // gross weekly sales

36 double commissionRate; // commission percentage

37 }; // end class CommissionEmployee

38

39 #endif

Fig. 11.12 | CommissionEmployee class definition that declares protected
data to allow access by derived classes. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data (cont.)

BasePlusCommissionEmployee inherits from class
CcommissionEmployee in Fig. 11.12.

Obijects of class BasePlusCommissionEmployee can
access inherited data members that are declared protected in
class CommissionEmployee (i.e., data members
firstName, TastName, socialSecurityNumber,
grossSales and commissionRate).

As a result, the compiler does not generate errors when compiling
the BasePlusCommissionEmployee earnings and
print member-function definitions in Fig. 11.11 (lines 34-38
and 41-49, respectively).

Obijects of a derived class also can access protected members
in any of that derived class’s /ndirect base classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data (cont.)

Testing the Modified BasePlusCommissionEmployee
Class

 To test the updated class hierarchy, we reused the test program
from Fig. 11.9.

« Asshown in Fig. 11.13, the output is identical to that of Fig. 11.9.

« The code for class BasePlusCommissionEmployee, which
IS 74 lines, Is considerably shorter than the code for the
noninherited version of the class, which is 161 lines, because the
Inherited version absorbs part of its functionality from
CommissionEmployee, whereas the noninherited version
does not absorb any functionality.

* Also, there Is now only one copy of the o
CommissionEmployee functionality declared and defined in
class CommissionEmployee.

— Makes the source code easier to maintain, modify and debug.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales 1is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Fig. 11.13 | protected base-class data can be accessed from derived class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data (cont.)

Notes on Using protected Data

* Inheriting protected data members slightly

Increases performance, because we can
directly access the members without incurring

the overhead of calls to sefor get member
functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 11.3

In most cases, it’s better to use private data members
to encourage proper software engineering, and leave
code optimization issues to the compiler. Your code will
be easier to maintain, modify and debug.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commissionEmployee—
BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data (cont.)

« Using protected data members creates two serious
problems.

— The derived-class object does not have to use a member function to
set the value of the base class’s protected data member.

— Derived-class member functions are more likely to be written so
that they depend on the base-class implementation. Derived classes
should depend only on the base-class services (i.e., non-private
member functions) and not on the base-class implementation.

« With protected data members in the base class, if the

base-class implementation changes, we may need to modify
all derived classes of that base class.

« Such software is said to be fragile or brittle, because a small
change in the base class can “break™ derived-class
Implementation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 11.4

It’s appropriate to use the protected access specifier
when a base class should provide a service (i.€., a non-
private member function) only to its derived classes
and friends.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 11.5

Declaring base-class data members private (as
opposed to declaring them protected) enables you to
change the base-class implementation without having to
change derived-class implementations.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

