
11.3.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee 

Inheritance Hierarchy (cont.) 

• For example, line 37 could have invoked 

getCommissionRate and getGrossSales to 

access CommissionEmployee’s private data 

members commissionRate and grossSales, 

respectively. 

• Similarly, lines 44–47 could have used appropriate 

get member functions to retrieve the values of the 

base class’s data members. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee 

Inheritance Hierarchy (cont.) 
Including the Base-Class Header in the Derived-Class 
Header with #include 

• We #include the base class’s header in the derived class’s 
header (line 8 of Fig. 11.10). 

• This is necessary for three reasons. 

– The derived class uses the base class’s name in line 10, so we 
must tell the compiler that the base class exists. 

– The compiler uses a class definition to determine the size of an 
object of that class. A client program that creates an object of a 
class #includes the class definition to enable the compiler to 
reserve the proper amount of memory for the object. 

– The compiler must determine whether the derived class uses the 
base class’s inherited members properly. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee 

Inheritance Hierarchy (cont.) 

Linking Process in an Inheritance Hierarchy 

• In Section 3.7, we discussed the linking process for creating an 
executable GradeBook application. 

• The linking process is similar for a program that uses classes 
in an inheritance hierarchy. 

• The process requires the object code for all classes used in the 
program and the object code for the direct and indirect base 
classes of any derived classes used by the program. 

• The code is also linked with the object code for any C++ 
Standard Library classes used in the classes or the client code. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data 

• In this section, we introduce the access specifier 

protected. 

• To enable class BasePlusCommissionEmployee to 

directly access CommissionEmployee data members 

firstName, lastName, socialSecurityNumber, 

grossSales and commissionRate, we can declare 

those members as protected in the base class. 

• A base class’s protected members can be accessed 

within the body of that base class, by members and 

friends of that base class, and by members and friends 

of any classes derived from that base class. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data (cont.) 

Defining Base Class CommissionEmployee 

with protected Data 

• Class CommissionEmployee (Fig. 11.12) 

now declares data members firstName, 

lastName, socialSecurityNumber, 

grossSales and commissionRate as 

protected (lines 31–36) rather than 

private. 

• The member-function implementations are 

identical to those in Fig. 11.5. ©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data (cont.) 

• BasePlusCommissionEmployee inherits from class 

CommissionEmployee in Fig. 11.12. 

• Objects of class BasePlusCommissionEmployee can 

access inherited data members that are declared protected in 

class CommissionEmployee (i.e., data members 

firstName, lastName, socialSecurityNumber, 

grossSales and commissionRate). 

• As a result, the compiler does not generate errors when compiling 

the BasePlusCommissionEmployee earnings and 

print member-function definitions in Fig. 11.11 (lines 34–38 

and 41–49, respectively). 

• Objects of a derived class also can access protected members 

in any of that derived class’s indirect base classes. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data (cont.) 

Testing the Modified BasePlusCommissionEmployee 
Class 

• To test the updated class hierarchy, we reused the test program 
from Fig. 11.9. 

• As shown in Fig. 11.13, the output is identical to that of Fig. 11.9. 

• The code for class BasePlusCommissionEmployee, which 
is 74 lines, is considerably shorter than the code for the 
noninherited version of the class, which is 161 lines, because the 
inherited version absorbs part of its functionality from 
CommissionEmployee, whereas the noninherited version 
does not absorb any functionality. 

• Also, there is now only one copy of the 
CommissionEmployee functionality declared and defined in 
class CommissionEmployee. 
– Makes the source code easier to maintain, modify and debug. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data (cont.) 

Notes on Using protected Data 

• Inheriting protected data members slightly 

increases performance, because we can 

directly access the members without incurring 

the overhead of calls to set or get member 

functions. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



11.3.4 CommissionEmployee–
BasePlusCommissionEmployee Inheritance 

Hierarchy Using protected Data (cont.) 

• Using protected data members creates two serious 
problems. 
– The derived-class object does not have to use a member function to 

set the value of the base class’s protected data member. 

– Derived-class member functions are more likely to be written so 
that they depend on the base-class implementation. Derived classes 
should depend only on the base-class services (i.e., non-private 
member functions) and not on the base-class implementation. 

• With protected data members in the base class, if the 
base-class implementation changes, we may need to modify 
all derived classes of that base class. 

• Such software is said to be fragile or brittle, because a small 
change in the base class can “break” derived-class 
implementation. 

©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 



©1992-2014 by Pearson Education, Inc. All 
Rights Reserved. 


